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Week 9

0.1 Solving Differential Equations (Contd.)

Example 0.1

1. Determine the Taylor expansion of (1 + x)
1

2 around 0.

f(x) = (1 + x)
1
2 ⇒ f(0) = 1

f (1)(x) = 1
2 (1 + x)−

1
2 ⇒ f (1)(0) = 1

2

f (2)(x) = 1
2 (−

1
2 )(1 + x)−

3
2 ⇒ f (2)(0) = 1

2 (−
1
2 )

f (3)(x) = 1
2 (−

1
2 )(−

3
2 )(1 + x)−

5
2 ⇒ f (3)(0) = 1

2 (−
1
2 )(−

3
2 )

Continuing like this we see that the Taylor series will be

1 + 1
2x−

1
2 (

1
2 )

2!
x2 +

1
2 (

1
2 )(

3
2 )

3!
x3

−

1
2 (

1
2 )(

3
2 )(

5
2 )

4!
x4

−

1
2 (

1
2 )(

3
2 )(

5
2 )(

7
2 )

5!
x5 . . .

2. Use Taylor series to find a solution for the IVP
dy

dx
=

1

2y
, y(0) = 1

This differential equation can also be written
dy

dx
= 1

2y
−1. And then we

1
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have

y(0) = 1

y(1)(x) =
1

2y
⇒ y(1)(0) =

1

2y(0)
=

1

2

y(2)(x) = −
1
2y

−2y(1) = −
1
2y

−2 1
2y

−1 = −( 12 )(
1
2 )y

(−3)

⇒ y(2)(0) = −( 12 )(
1
2 )

y(3)(x) = −( 12 )(
1
2 )(−3)y(−4)y(1) = −( 12 )(

1
2 )(−3)y(−4) 1

2y
−1 = −( 12 )(

1
2 )(

−3
2 )y(−5)

⇒ y(3)(0) = ( 12 )(
1
2 )(

3
2 )

Continuing like this we get the Taylor series for the solution:

1 + 1
2x−

1
2 (

1
2 )

2!
x2 +

1
2 (

1
2 )(

3
2 )

3!
x3

−

1
2 (

1
2 )(

3
2 )(

5
2 )

4!
x4

−

1
2 (

1
2 )(

3
2 )(

5
2 )(

7
2 )

5!
x5 . . .

From our previous work we recognise this as the Taylor series around 0 for

the function (1+x)
1

2 and we can verify that this is the solution of the IVP.

3. The Taylor expansion around 0 of x3 + 1 is 1 + x3.

4. The Taylor expansion around 1 of x3+1 is 2+3(x−1)+3(x−1)2+(x−1)3.

5. Use Taylor series to solve the IVP
dy

dx
=

3y − 3

x
, y(1) = 2.

y(1) = 2

y(1)(x) =
3y − 3

x
⇒ y(1)(1) =

6− 3

1
= 3

y(2)(x) =
3y(1)x− (3y − 3)

x2
=

3
3y − 3

x
x− (3y − 3)

x2
=

6y − 6

x2
⇒ y(2)(1) = 6

y(3)(x) =
6y(1)x2

− (6y − 6)2x

x4
=

6
3y − 3

x
x2

− (6y − 6)2x

x4
=

6yx− 6x

x4

⇒ y(3)(1) = 6

y(4)(x) =
(6y(1)x+ 6y − 6)x4

− (6yx− 6x)4x3

x8
=

24yx4
− 24x4

− 24yx4 + 24x4

x8
= 0

The Taylor series for the solution is then 2+3(x− 1)+3(x− 1)2+(x− 1)3

which is x3 + 1.
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0.1.1 Euler’s Method

Euler’s method uses just the first two terms of the Taylor expansion to estimate

the solution to a differential equation.

That is, if f(x) is a solution of
dy

dx
= F (x, y) with “initial value” f(x0) the

Taylor polynomial of degree 1 around x0 is

f(x0) + f ′(x0)(x− x0) = f(x0) + F (x0, f(x0))(x− x0)

This will be a very crude estimate for f(x) with error term f (2)(c)
(x− x0)

2

2
where c is some point between x and x0.

The only way we can reduce the size of the error is to keep x− x0 small, that

is, keep x close to x0.

If we let x1 = x0 + h where h is small then

f(x1) ≈ f(x0) + F (x0, f(x0)(x1 − x0) = f(x0) + F (x0, f(x0))h

This gives us an approximation to the solution at a point x1 a small distance

away from the initial point.

We then use this approximation to generate a Taylor polynomial of degree 1

around the new point x1 in order to estimate f(x2) where x2 = x1+h. That is

f(x2) ≈ fapprox(x1) + F (x1, fapprox(x1))h.

Similarly we get:

f(x3) ≈ fapprox(x2) + F (x2, fapprox(x2))h.

where x3 = x2 + h and so on.

The following diagram illustrates how Euler’s method generates an approx-

imation to the value of the solution at xi by using the value of the Taylor

polynomial of degree 1 at xi−1. The approximation at xi is in turn used to gen-

erate an approximation at xi+1 and so on. Obviously all Taylor polynomials

except the first one are based on approximate values of the solution so there is

an added error incurred at each step of the method. However, these errors are

usually considerably smaller than the error that we would incur if we simply

used the Taylor polynomial around (x0, y0) only.
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Taylor poly of degree 1

around (x0, y0)

Taylor poly of degree 1

around (x1, y1)

Taylor poly of degree 1

around (x2, y2)

(x0, y0)

(x1, y1)

(x2, y2)

Example 0.2

Consider the differential equation
dy

dx
= y. That is F (x, y) = y.

We know that y = ex is a solution of this equation with initial condition

y(0) = 1.

The following code outputs to a text file the co-ordinates for the graph of

the of the approximate solution generated by Euler’s method and also the

corresponding values of the exact solution ex over the interval [0, 4].

#include <iostream>
#include<cmath>
#include<fstream>
using namespace std;

double F(double x, double y)
{
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return y;
}
void main()
{

ofstream fout("euler.txt");
double h=0.1;
double ny;
for(double x=0;x<=4;x+=h)
{

ny=y+F(x,y)*h;// Taylor poly of degree 1
fout<<x<<"\t"<<y<<"\t"<<exp(x)<<endl;
y=ny

}
}

Euler’s method is also known as an order 1 Taylor method since it uses a Taylor

polynomial of degree 1 to estimate the value of the solution to a differential

equation at a point close to the last point at which it was estimated.

At each step of the method there will be an inaccuracy in the estimate of the

next step and the estimate for the next step will include this innacuracy as well

as the innaccuracy of the current estimate and so the estimated solution will

drift farther from the exact one at each step.

The accuracy at each step can be improved by using a higher order Taylor

method i.e. by using a Taylor polynomial of higher degree to generate the new

estimates.

That is, instead of

fapprox(x+ h) = fapprox(x) + f ′

approx(x)h

= fapprox(x) + F (x, fapprox(x))h

we have

fapprox(x+ h) = fapprox(x) + f ′

approx(x)h+ f ′′

approx(x)
h2

2

= fapprox(x) + F (x, fapprox(x))h+ f ′′

approx(x)
h2

2
.

We can get f ′′(x) from the differential equation. That is,

f ′(x) = F (x, f(x)) ⇒ f ′′(x) =
d

dx
F (x, f(x)).

And so, if we let F1(x) =
d

dx
F (x, f(x)), the Taylor method of order 2 is:

fapprox(x+ h) = fapprox(x) + F (x, fapprox(x))h+ F1(x, fapprox(x))
h2

2
.
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Code for Taylor method of order 2:

#include <iostream>
#include <cmath>
#include <iomanip>
#include <fstream>

using namespace std;

double F(double x, double y)
{

return y; //The differential equation is dy/dx =y
}

double F1(double x,double y)
{

return y;//In this case d/dx F(x,y) = dy/dx = y
}
void main()
{

double h = pow(2,-3); //The step size
double ny;
for(double x=0; x<=4;x+=h)
{

ny=y+F(x,y)*h+F1(x,y)*h*h/2;
fout<<x<<"\t"<<y<<"\t"<<exp(x)<<endl;
y=ny;

}

}

Yet higher order Taylor methods can be used but these will require more cal-

culations of the higher order derivatives of the solution function and this can

be difficult if the differential equation is complicated.

0.1.2 Separation of variables

The technique of separation of variables uses the so-called substitution rule for

integration. The substitution rule is in turn based on the chain rule for differ-

entiation.

Recall that, according to the chain rule (assuming that all functions are suitably

differentiable), we have

d

dx
f(u(x)) =

d

du
f(u)

d

dx
u(x)
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Example 0.3

d

dx
sin(x2) = 2x cos(x2)

Recall also that an indefinite integral is an anti-derivative i.e.
∫

(

d

dx
f(x)

)

dx = f(x).

Example 0.4

∫

x2dx = 1
3x

3 + constant

because
d

dx
( 13x

3 + constant) = x2.

Therefore we can see that
∫

(

d

du
f(u)

d

dx
u(x)

)

dx = f(u(x)).

Example 0.5

∫

2x cos(x2)dx = sin(x).

The substitution rule is now obvious because
∫

(

d

du
f(u)

d

dx
u(x)

)

dx = f(u(x)) =

∫

d

du
f(u)du.

Notationally we see that
d

dx
u(x)dx

in the left hand integral has been replaced by

du

in the right hand integral (as if dx has been cancelled!)

Thus we get the substitution rule

∫

F (u)
du

dx
dx →

∫

F (u)du.
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Example 0.6

∫

du
dx
↓

2x cos

u
↓

(x2)dx =

∫

cos(u)du = sin(u) = sin(x2)


